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Abstract

Understanding narratives requires dynamically
reasoning about the implicit causes, effects,
and states of the situations described in text,
which in turn requires understanding rich back-
ground knowledge about how the social and
physical world works. At the core of this chal-
lenge is how to access contextually relevant
knowledge on demand and reason over it.

In this paper, we present initial studies to-
ward zero-shot commonsense QA by formu-
lating the task as probabilistic inference over
dynamically generated commonsense knowl-
edge graphs. In contrast to previous studies
for knowledge integration that rely on retrieval
of existing knowledge from static knowl-
edge graphs, our study requires commonsense
knowledge integration where contextually rel-
evant knowledge is often not present in exist-
ing knowledge bases. Therefore, we present a
novel approach that generates contextually rel-
evant knowledge on demand using generative
neural commonsense knowledge models.

Empirical results on the SOCIALIQA and STO-
RYCOMMONSENSE datasets in a zero-shot
setting demonstrate that using commonsense
knowledge models to dynamically construct
and reason over knowledge graphs achieves
performance boosts over pre-trained language
models and using knowledge models to di-
rectly evaluate answers.

1 Introduction

Understanding narratives requires reasoning about
all the implicit, but trivially inferable details about
a situation based only on what is explicitly stated
in text. A statement as simple as “they went to
the club” instantly invokes a bank of commonsense
expectations: that they had to get dressed, that they
were going dancing, that they likely had drinks,
and so forth. These reasoning capabilities are miss-
ing in most existing neural language understanding
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Figure 1: Agents must reason about the commonsense
inferences underlying situations depicted in text

models that learn task-specific representations with-
out acquiring rich background knowledge about the
social and physical world.

In response, recent work has investigated aug-
menting deep learning models with retrieval mech-
anisms over large-scale commonsense knowledge
graphs (Mihaylov and Frank, 2018; Bauer et al.,
2018; Paul and Frank, 2019). However, these ap-
proaches assume an entity linking step between the
written text and knowledge graph. By canonicaliz-
ing entities, they discard key context surrounding
the input, and can often retrieve semantically irrele-
vant knowledge (e.g., the fact that a club is a blunt
weapon is irrelevant to the earlier statement).

In this paper, we propose to generate new knowl-
edge that is contextually relevant instead of retriev-
ing existing knowledge as is. Bosselut et al. (2019)
recently introduced Commonsense Transformers
(COMET), a new framework for training neural rep-
resentations of knowledge graphs. This new class
of neural knowledge model provides a powerful
representational tool for connecting commonsense
knowledge to downstream task models. Because
COMET represents knowledge graphs neurally, it
can generate commonsense inferences for any en-



tity that can be encoded by the neural model. With
no need to canonicalize context entities for link-
ing with a static knowledge graph, the knowledge
model can be queried directly with complex compo-
sitional structures, and even full narrative contexts.

In this work, we use COMET to construct
context-relevant knowledge graphs that can be
reasoned over for commonsense question answer-
ing. Given a raw context, COMET generates com-
monsense inferences that provide world knowl-
edge about the situation depicted in the context.
These inferences can be used as additional con-
texts to score answer candidates or to generate
even more inferences. By generating new infer-
ences and connecting them to the raw context and
answers, COMET dynamically constructs a knowl-
edge graph of commonsense. The raw context is
the root node, answer choices are leaf nodes and
generated commonsense inferences provide reason-
ing paths between the context and answers. More-
over, edges between these nodes are weighted by
COMET’s knowledge model scores. Using exact
probabilistic inference, we can reason over the gen-
erated graph to identify the most likely answer to
the question about the context.

We evaluate our approach in a zeroshot setting
on the SOCIALIQA (Sap et al., 2019b) bench-
mark, a question answering dataset for evaluating
social commonsense, and the STORYCOMMON-
SENSE benchmark (Rashkin et al., 2018), a story
understanding dataset. Empirical results show that
the approach outperforms large-scale pretrained
language models (Radford et al., 2018, 2019) and
COMET models that evaluate QA examples directly
without dynamically generating an intermediate
commonsense knowledge graph (i.e., reasoning
with COMET with no inference hops). Ablations
indicate that our approach is agnostic to the de-
coding algorithm used to generate commonsense
inferences for constructing the knowledge graph,
but that the pretrained language model used to seed
COMET does impact the downstream performance.

2 Neural Representations of Knowledge
Graphs for Question Answering

Task Overview Formally, we assume of dataset
of examples, each with an associated context c
describing a situation, a question q asked about
that situation, and a set of n possible answers A =
{a0, ..., an} to that question. Each answer is made
up of multiple tokens Xa = {x0, ..., x|a|}.

COMET is originally trained to generate the to-
kens of the target entity e2 from a knowledge base
tuple (e1, r, e2) given a seed entity e1 and a rela-
tion r. Being architected as a conditional language
model, it can also be used to evaluate tuples by
aggregating scores for each token in e2 based on
their conditional loglikelihood. In this work, we
exploit this property to perform zero-shot evalua-
tion of each answer candidate a ∈ A. For a given
example, we map the context c to be equivalent to
e1 for COMET, the question q to be equivalent to
r, and each answer candidate a to e2. As a result,
COMET is able to evaluate each answer candidate
for the multiple-choice question according to the
implicit knowledge it neurally encodes.

Computing Answer Scores For each answer
a ∈ A, we define a score proportional to its proba-
bility of being correct based on each token’s condi-
tional loglikelihood as computed by COMET:

φa =
1

|a|

|a|∑
t=1

logP (xt|x<t, q, c) (1)

where xt corresponds to the token in a at time step
t, x<t is all the tokens preceding xt in a, |a| is the
total number of tokens making up a, and:

P (xt|x<t, q, c) = COMET(c, q, x<t) (2)

where the tokens of c and q are concatenated with
the tokens x<t to be input to COMET. The most
likely answer can then be computed as:

â = argmax
a∈A

φa (3)

where â is the predicted answer from directly evalu-
ating answer candidates using COMET with respect
to the context.

3 Dynamic Construction of Intermediate
Knowledge Graphs

Apart from evaluating answer candidates,
COMET can also be used to generate common-
sense inferences about a situation. Being originally
trained as a transfer learning engine from large-
scale pretrained language models (Radford et al.,
2018) to knowledge graphs (Sap et al., 2019a),
a trained COMET model can generate social
commonsense inferences about any situation by
treating a textual context c as an input event to the
neural knowledge graph. The generated inferences
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Figure 2: COMET receives the context c and question q. COMET can evaluate answer candidates directly and
generate new commonsense inferences related to the context. By generating new inferences, it constructs a graph
that can be reasoned over to select the best answer to the question.

can then be used as additional paths for reasoning
about the question q and answer set a.

In Figure 2, for example, COMET selects scared
as the most likely answer to the question given the
context. However, after generating intermediate
commonsense inferences such as “Kai wants to be
calm,” the inference algorithm rescores the answers
to identify relieved as more likely. Below, we out-
line how intermediate situational inferences can
be generated, thereby dynamically building out a
knowledge graph of commonsense related to the
context, and how COMET can then score answers
relative to its own inferences.

3.1 Building the Graph

Generating COMET Inferences We generate
commonsense inferences about a situational con-
text c by concatenating the context with relation
types from the ATOMIC knowledge graph and using
COMET to produce candidates G. Each candidate
g ∈ G is associated with a score φg that approxi-
mates the model’s confidence in the inference:

φg =
1

|g|

|g|∑
s=1

logP (ys|y<s, c, r) (4)

where ys are the tokens of g, |g| is the token length
of g and r is an arbitrary commonsense relation
type for which COMET can generate inferences.
Any generation g ∈ G that was conditioned on c
can be seen as a 1-hop inference of c.

Using a Markov assumption, we can generalize
this approach by conditioning on generated com-

monsense inferences to generate G`, a set of `-hop
inferences from c:

φ`g = φ`−1g +
1

|g`|

|g`|∑
s=1

logP (ys|y<s, g
`−1, r) (5)

where φ`g is a generation score for any g` ∈ G`,
g`−1 is an arbitrary inference from G`−1, the set
of inferences of the previous hop, and φ`−1g is the
generation score of that seed inference. We set
g0 = c and φ0g = 0 because the original context c
is not probabilistic.

Computing Answer Scores Without loss of gen-
erality across `, for any generation g ∈ G`, we can
use Equation 1 to compute a score φa for each
answer. Rather than using the example’s original
context as c, we condition on g and the question q
to compute φa for each answer with COMET as an
evaluator:

φa =
1

|a|

|a|∑
t=1

logP (xt|x<t, q, g) (6)

where xt are the tokens in answer a ∈ A and |a| is
the length of a. Once φa is computed for answer
a for every generated inference g ∈ G`, we can
marginalize over inference scores:

φ`ga =
1

|G`|

|G`|∑
m=1

γgφ
m,`
g + γaφ

m,`
a (7)



where |G`| is the number of `-hop inferences gen-
erated by COMET from generations at the previous
level (G`−1), and φm,`

g (Eq. 5) and φm,`
a (Eq. 6) are

the path and answer score, respectively, for gen-
eration g`m ∈ G`. γg and γa are hyperparameters
balancing the contribution of both scores. At a high
level, φ`ga can be interpreted as approximating the
likelihood of answer a given the reasoning path of
{c→ g1 → · · · → g`}.

As the number of levels L grows and the number
generated inferences |G`| grows for each level ` ∈
(0, L), it becomes intractable to compute φga by
marginalizing over all generated inferences, so we
define a maximum likelihood estimator over the
distribution of generated inferences G:

φ`gamax
= max

m∈[0,|G`|)
γgφ

m,`
g + γaφ

m,`
a (8)

where [0, |G`|) is the range of possible g`m ∈ G`
that can be indexed.

3.2 Evaluating the Graph
Probabilistic Reasoning Once the answer
scores with respect to different levels in the graph
are computed {φ`ga}L0 , the final score for each
answer can be evaluated by marginalizing over the
graph levels ` ∈ [0, L) and selecting the answer
with the highest score:

logP (a|q, c) ∝ φens =
L∑

`=0

β`gaφ
`
ga (9)

â = argmax
a∈A

φens (10)

where L is the number of generation hops made
by the COMET model (i.e., the number of levels in
the graph), φ`ga is the score that is propagated from
each hop of the constructed knowledge graph, and
β`ga is hyperparameter scaling the contribution of
each hop score. We note that φ0ga is the result from
evaluating the answer candidates directly against
the original context c in Equation 1.

Overcoming Answer Priors Because certain an-
swer candidates have a high probability of occur-
ring for certain questions regardless of the con-
text (e.g., happy is a common answer for questions
about emotional reactions), we redefine φa (Eq. 6)
in terms of the point-wise mutual information be-
tween the inference g and answer a:

φa ∝ PMI(a, g|q) (11)

φa =
1

|a|

|a|∑
t=1

(
logP (xt|x<t, q, g)

− logP (xt|x<t, q)
)

(12)

where logP (xt|x<t, q) is the conditional loglike-
lihood of each token in the answer given only the
question and previous answer tokens.

4 Experimental Setup

We evaluate our method on two datasets: SO-
CIALIQA(Sap et al., 2019b), a social commonsense
question answering dataset, and STORYCOMMON-
SENSE (Rashkin et al., 2018), a text classification
dataset for identifying the motivations and emo-
tions of characters in short stories. For each dataset,
we use the development set and test set to report
performance. Because our experiments are done
in a zero-shot setting, we do not use training sets
to update any model parameters. Furthermore, any
result presented on the test set does not have hy-
perparameters tuned on the development set. As
additional analysis, we show ablations with scores
from the development sets of these datasets.

4.1 Datasets and Processing

SOCIALIQA The SOCIALIQA dataset evaluates
a model’s ability to understand the social dynamics
underlying situations in short text snippets. Each
example in the dataset consists of a context, a ques-
tion about that context, and three candidate answers
to the question. An example from the dataset is
shown in Figure 2. When converting generated
inferences to contexts for answer scoring (Eq. 6),
we add a prefix that is specific to the inference type
to the generated tokens (e.g., happy⇒ Person is
happy). The prefixes for each inference type can
be found in Table 6 in Appendix A. Additionally,
we prune the list of generated inferences that can
be used for reasoning with rules that are presented
in Appendix A. For our main models and abla-
tions, names that appear in contexts and answers
are anonymized.

STORYCOMMONSENSE The STORYCOMMON-
SENSE dataset consists of short 5-sentence sto-
ries with annotated motivations and emotional re-
sponses whose labels are drawn from classical the-
ories of psychology: Plutchik’s Wheel (Plutchik,
1980), Maslow’s Hierarchy of Needs (Maslow,



Dataset # dev # test
SOCIALIQA 1952 2217
STORYCOMMONSENSE 202360 182160

Table 1: Dataset statistics for SOCIALIQA and STO-
RYCOMMONSENSE

1943), Reiss Motives (Reiss, 2004). In this work,
we use the Plutchik classification task to evaluate
our method. We map the classification task to a
question answering task by posing an individual
question for each emotion (disgust, surprise, fear,
anger, trust, anticipation, sadness, joy) that must
be predicted for each example. As the answer text
to score, we use formulations of the words that
make up the classification label (e.g., disgusted, sur-
prised, afraid, angry, trusting, excited, sad, happy).
The total number of QA pairs extracted is outlined
in Table 1. As question representations q to give
to COMET, we use the relations from ATOMIC

(Sap et al., 2019a), the knowledge graph on which
COMET is trained, that correspond to reactions
to events: xReact and oReact. When comput-
ing φa (Eq. 12, 6), we compute a score for q =
xReact, oReact and average them. Rules for
pruning inferences are presented in Appendix A.

4.2 Experiment Settings

Hyperparameters We use most of the same hy-
perparameters to train the COMET model on the
ATOMIC knowledge graph as in Bosselut et al.
(2019). However, we use GPT2-345M (Radford
et al., 2019) as the pretrained language model that
seeds COMET and freeze the position embeddings
so we can generalize to longer contexts than in
ATOMIC. The number of levels in the graph L is set
to 1, meaning we only do 1-hop of commonsense
inferences. As we operate in the zero-shot setting,
we do not tune inference hyperparameters. For the
SOCIALIQA dataset, we set γg = γa = 1.0 and
β` = 1.0 ∀`. For STORYCOMMONSENSE, we use
the same hyperparameters except that γg = 0. Un-
less stated otherwise, we use argmax decoding to
generate commonsense inferences from COMET.

Predictions To predict an answer on the SO-
CIALIQA dataset, we use Equation 10. Making
predictions for STORYCOMMONSENSE is more
complicated as the task is originally a binary clas-
sification task for eight different dimensions (i.e.,
emotional responses). To make a prediction, we

treat φens (Eq. 9) for each dimension independently
and select an answer based on whether φens is
above a dimension-specific threshold:

â = 1[φnens > κn] (13)

where φnens is the score from the model for dimen-
sion n and κn is the threshold for that dimension.
Normally, we could tune these decision thresholds
on the validation set, but this would violate the
zero-shot setting. Instead, decision thresholds are
chosen by producing a cumulative distribution func-
tion over model scores for the validation examples.
Then, we select the threshold as the score at the
percentile of the positive label distribution (i.e., if
the joy emotion is present for 20% of examples, we
set the score at the 20th percentile of the CDF as
the threshold). Thresholds are reported in Table 7
of Appendix A for each label.

5 Experimental Results

5.1 SOCIALIQA

Baselines As baselines in the SOCIALIQA study,
we use state-of-the-art pretrained language models:
GPT (Radford et al., 2018), GPT2-117M, GPT2-
345M, and GPT2-762M (Radford et al., 2019). To
adapt these language models optimally to the QA
task, question-answer pairs are automatically con-
verted to a templated form. For example, a ques-
tion such as "How does Alice feel after?" will be
replaced by the template “Alice feels". Answers
are appended to the end of the template, which is
then concatenated to the context, and the language
models score the answer words conditioned on the
context and template. Table 9 in Appendix A pro-
vides the template for each question variety. We
also report the results of a model that solely uses
φ0ga to select answers (i.e., answers are evaluated
directly against the context with no dynamic graph
construction) and call this model COMET - CA. Fi-
nally, for comparison, we report the result of the
random, supervised BERT (Devlin et al., 2018),
and human baselines from Sap et al. (2019b).

Ablations We evaluate two ablation types. First,
we investigate whether the algorithm for generating
commonsense inferences from COMET affects the
utility of the generated facts. We present the ef-
fect of the following candidate generation schemes:
argmax greedy decoding, beam search with beam
size b = 5, 10 and top-k sampling (Fan et al., 2018;



Model Dev Acc. Test Acc.

Random 33.3 33.3
GPT 41.8 41.7
GPT2 - 117M 40.7 41.5
GPT2 - 345M 41.5 42.5
GPT2 - 762M 42.5 42.4

COMET - CA 48.7 49.0
COMET - CGA 49.6 51.9
BERT - Large (sup.) 66.0 66.4
Human 86.9 84.4

Table 2: Results on the development and test sets of
SOCIALIQA. COMET - CGA is our model.

Holtzman et al., 2018) with k = 5, 10 . For each de-
coding method, we provide the inference algorithm
with every candidate produced by each strategy
(e.g., argmax decoding produces a single candidate,
top-10 sampling produces 10 candidates). Second,
we test the effect the pretrained language model
used to seed COMET. We train additional versions
of the neural knowledge base from GPT, GPT2-
117M, and GPT2-762M.

Overall performance We report the main results
of our SOCIALIQA study in Table 2. Our model
achieves an absolute improvement of 8.4% over the
top performing language model baseline, showing
the effectiveness of using a neural commonsense
knowledge base. Additionally, our approach of dy-
namically constructing a knowledge graph on de-
mand (COMET - CGA) performs better than using
the neural knowledge base to directly evaluate an-
swers (COMET - CA) by∼ 3%. Figure 2 shows an
example demonstrating how the knowledge graph
can help re-score answer options.

We note, however, that the state-of-the-art per-
formance of the supervised BERT model is 66.4%,
indicating there is still much room for improvement
in using neural knowledge bases for zero-shot ques-
tion answering. One point of interest is that the
performance of training the BERT model with only
5000 training examples (rather than the full 30k) is
close (54%) to COMET - CGA, indicating that neu-
ral knowledge bases and joint neural-symbolic solu-
tions are promising for studies in low-data regimes.

Tuning effects To evaluate how our results
would have varied if we had tuned hyperparameters,
we vary β`ga ∀` ∈ L by increments of 0.1 between 0
and 1 and report the results in Figure 3. Regardless

Figure 3: SOCIALIQAdevelopment set performance
across different hyperparameter settings

of the values of these hyperparameters, COMET -
CGA was superior to the pretrained language mod-
els in every configuration, and better than COMET -
CA (depicted by red line) 80% of the time. The
black line indicates the performance of the purely
zero-shot approach, which is one of the better per-
forming configurations, though better results are
possible by varying these values. The best perform-
ing configurations often have β1ga ∼ 1.5β0ga, high-
lighting the importance of the constructed graph.

Decoding Algorithm CGAmax CGA

Argmax Decoding 49.6 49.6
Beam Search - 5 49.1 49.9
Beam Search - 10 49.1 49.6
Top-5 sampling 49.0 49.7
Top-10 sampling 49.4 49.8

Table 3: Effect of the decoding algorithm for generat-
ing commonsense inferences from COMET. All results
on SOCIALIQA development set.

Effect of decoding strategy Our results in Ta-
ble 3 show that the performance of the graph con-
struction algorithm is agnostic to the decoding strat-
egy used to generate commonsense knowledge.
This result is promising as it shows that the rea-
soning procedure is robust to variability in the can-
didate generations. However, it also depicts the
weakness of using exact inference or maximum
likelihood estimation for reasoning over the graph,
as these approaches are not capable of leveraging
larger candidate sets of commonsense knowledge
to answer questions correctly. These results point
to the need for future work in developing algo-
rithms that can leverage diverse commonsense in-
ference paths for reasoning over dynamically con-



Language Model CA Acc. CGA Acc.

GPT 49.1 49.1
GPT2 - 117M 44.9 46.6
GPT2 - 345M 48.7 49.6
GPT2 - 762M 41.1 42.7

Table 4: Effect of pretrained language model used to
seed COMET. CGA Acc. is for exact inference (Eq. 7).

structed knowledge graphs.

Effect of COMET language model COMET is
sensitive to the pretrained language model on
which it is trained. In Table 4, we report the per-
formance of training COMET on different seed lan-
guage models. We see that the COMET model
trained on OpenAI GPT (Radford et al., 2018)
has the best performance when directly answering
the questions without generating an intermediate
knowledge graph. However, training COMET on
GPT2-345M (Radford et al., 2019) yields better re-
sults when an intermediate knowledge graph is con-
structed. Most importantly, however, regardless of
which language model seeds COMET, generating
commonsense inferences for reasoning always pro-
duces superior performance on SOCIALIQA com-
pared to answering questions directly. Interestingly,
there is a drastic performance drop when train-
ing on COMET on GPT2-762M despite it being
one of the better language models to evaluate di-
rectly on SOCIALIQA (as seen in Table 2). This
result implies that the learned representations of
GPT2-762M may not be as directly transferable as
smaller versions of the model, though further anal-
ysis would be needed to confirm this hypothesis.

5.2 STORYCOMMONSENSE

Baselines As baselines, we report the perfor-
mance of several models from Rashkin et al. (2018).
Similar to our setup, these baselines can only ac-
cess the sentence of the story for which the emo-
tion classification must be made. These models use
TF-IDF features, Glove embeddings (Pennington
et al., 2014), LSTMs (Hochreiter and Schmidhuber,
1997), or CNNs (Kim, 2014), respectively, to en-
code the sentence. For each baseline, a multi-label
linear classifier separately predicts each emotion
label from this joint representation. As with SO-
CIALIQA, we also report the results of a baseline
that only uses φ0ga to select answers (COMET - CA).
Finally, we report the performance of a supervised

Model P R F1
Random 10.4 50.0 17.2
Random (weighted) 12.3 11.8 12.0

Zero-shot No Training Data
COMET - CA 18.6 17.9 18.2
COMET - CGA 19.9 18.8 19.3

Tuned Hyperparameters No Training Data
COMET - CA 16.2 60.3 25.5
COMET - CGA 18.6 52.5 27.5

Supervised
TF-IDF 20.1 24.1 21.9

Glove 15.2 30.6 20.3
LSTM 20.3 30.4 24.3

CNN 21.2 23.4 22.2
GPT 41.6 50.2 45.5

Table 5: Precision, Recall, and F1 of Plutchik emotion
prediction on the STORYCOMMONSENSE dataset. The
best model within the zero-shot, tuned, and supervised
sections is bolded

GPT model that has access to preceding context
sentences.

Results Our results indicate that our zero-shot al-
gorithm approaches the performance of the weaker
supervised baselines for this task. This result is
promising as no additional training is used to adapt
the COMET model to a classification task. Instead,
we use the learned neural knowledge graph to score
the likelihood of tokens corresponding to emotional
reactions for characters in the story. Importantly,
once again, we see consistent improvement from
dynamically generating a contextualized common-
sense knowledge graph of facts rather than directly
evaluating the answer choices with COMET. Our
full approach yields higher precision, recall, F1,
and accuracy than the COMET - CA baseline.

To evaluate the quality of our untuned thresholds
from Section 4.2 based on the CDF of the model’s
scores, we also report the results of our approach
if we are allowed to tune the κ thresholds on 20%
of the development data (the same amount used for
validation in Rashkin et al. (2018)). We see large
gains in Recall from this process, causing our per-
formance to exceed most supervised models. There
is still much improvement that can be made, how-
ever, as new large-scale transformer models that
are trained in a supervised manner are considerably
better on this task.



6 Related Work

Question Answering with Knowledge Graphs
Previous work has explored integrating reasoning
over static knowledge graphs for question answer-
ing and story understanding. In general, these ap-
proaches extract knowledge tuples from the static
KG by linking canonicalized entities to nodes
and performing multi-hop inference along rela-
tion paths to form full tuples that can be encoded
by a downstream neural architecture (Mihaylov
and Frank, 2018; Bauer et al., 2018; Weissenborn
et al., 2017; Lin et al., 2019; Paul and Frank, 2019).
Similar to our approach of discovering reasoning
chains between contexts and answers, Paul and
Frank (2019) extract multi-hop reasoning paths in
ConceptNet between normalized entities from the
context answer candidates, but can only discover
paths through nodes in the static knowledge graph.
Finally, there exists work that also dynamically con-
struct latent knowledge graphs (Das et al., 2019;
Bosselut et al., 2018), but these works presuppose
a fixed set of entities that can be KG nodes and
then approximate graph edges with neural transfor-
mations. In contrast, our algorithm can generate
arbitrary nodes, thereby dynamically constructing
a unique symbolic structure for any example that
can be reasoned over with probabilistic inference.

Multi-hop Reading Comprehension Similar in
spirit to reasoning over knowledge graphs for ques-
tion answering is work in multi-hop reading com-
prehension. Many datasets for learning to aggre-
gate multiple facts without graph structure have
been released in recent years (Weston et al., 2016;
Welbl et al., 2018; Yang et al., 2018; Talmor and
Berant, 2018). Approaches designed for these re-
sources generally use large-scale neural networks
to attend over supporting facts across text (Zhong
et al., 2019; Dhingra et al., 2018). Most similar to
our work are approaches that construct real-time
entity mention graphs as neural reasoning paths
(Cao et al., 2018; Jiang et al., 2019; Jiang and
Bansal, 2019; Fan et al., 2019). Our approach dif-
fers from these models in that we generate relevant
supporting information rather than mining it from
accompanying documents and conduct our study
in a zero-shot setting with no additional training.

Automatic Commonsense KG Construction
Multi-hop reasoning over commonsense inferences
requires construction of commonsense knowledge
graphs and recent approaches have investigated

how to mine commonsense knowledge from deep
learning models. Work by Sap et al. (2019a) in-
vestigated whether LSTM models could generate
new tuples for the ATOMIC knowledge graph. Sim-
ilarly, Li et al. (2016) and Saito et al. (2018) ex-
plored whether neural models could be used to
validate proposed ConceptNet-style knowledge tu-
ples rather than generating new ones. Jastrzębski
et al. (2018) built on these approaches for evalu-
ating novel commonsense knowledge mined from
Wikipedia. More recent work mapped candidate
commonsense tuples to natural language with tem-
plates and used pretrained transformer language
models to validate them (Davison et al., 2019;
Petroni et al., 2019). Concurrently, other research
has explored using pretrained language models and
adapting them as generative knowledge graph con-
structors (Bosselut et al., 2019; Malaviya et al.,
2019). In contrast to these works that augment
static knowledge graphs, our approach focuses on
constructing contextualized knowledge graphs on
demand to provide context-dependent common-
sense for downstream inference.

7 Conclusion

We use neural representations of large-scale com-
monsense knowledge graphs (COMET) to generate
contextualized knowledge graphs on demand for
zero-shot question answering. Our approach dy-
namically constructs a knowledge graph of com-
monsense inferences related to a presented context
and conditions on it to evaluate answer options for
a posed question. We use probabilistic inference
to reason over the constructed graph to select the
most likely answer to a question. Our approach ex-
ceeds the performance of large-scale pretrained lan-
guage models at the zero-shot setting by 8.5% on
the SOCIALIQA dataset. Furthermore, on both the
SOCIALIQA and STORYCOMMONSENSE datasets,
dynamically generating a contextualized common-
sense knowledge graph performs better than using
COMET to directly answer questions.
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A Additional Experimental Settings

Rules for pruning generation sets

1. Any generation that is “none" is pruned

2. Any generation that is identical to a previ-
ous generation from the same inputs, but has
added punctuation is pruned (e.g., to go to the
mall vs. to go to the mall.)

3. Any generation for the following relations that
mentions “PersonY" is removed: oEffect,
oReact, oWant. These generations are
untrustworthy as they are often impossible
to resolve with an actual person in the context

4. Any generation for the following relations that
does not have a token that is a verb is removed:
xEffect, oEffect

5. In multiple candidate settings, if one of the
candidates is “none,” we prune all candidates
with less likely scores

6. For the STORYCOMMONSENSE dataset,
based on an inductive prior, we only gener-
ate inferences along the following ATOMIC

relations: xReact, oReact, xEffect,
oEffect, xIntent. The logic for pruning
xWant, oWant, xNeed, xAttr inferences
is that emotional reactions for these dimen-
sions could be irrelevant to the context. For
example, the emotional reaction to getting into
a car accident is different from needing to
own a car to do this. Emotional reactions to
the kept relations are more likely to be fideli-
tous to the original context.

Relation Prefix
xWant PersonX wants
xReact PersonX is
xNeed PersonX needs
xIntent PersonX wants
xAttr PersonX is
xEffect PersonX
oReact PersonX is
oEffect PersonX
oWant PersonX wants

Table 6: Prefixes appended to COMET produced com-
monsense inferences for the evaluation step (Eq. 6)

Dimension CA κ CGA κ

disgust 0.3751 2.0287
surprise -0.0329 1.2635
fear 0.1224 1.3517
anger 0.0041 1.1286
trust -0.0144 1.1514
anticipation 0.0619 1.9843
sadness 0.0126 1.3311
joy 0.0210 1.2462

Table 7: Percentile thresholds κ for predicting an emo-
tion for the COMET - CA and COMET - CGA models.
Thresholds for COMET - CGA tend to be higher be-
cause the score is the sum of all graph level scores

Dimension CA κ CGA κ

disgust 0.1 0.1
surprise 1.0 2.1
fear 0.3 0.5
anger 0.2 0.3
trust 0.2 0.5
anticipation 1.4 2.7
sadness 0.2 0.1
joy 0.6 1.1

Table 8: Tuned thresholds κ for predicting an emotion
for the COMET - CA and COMET - CGA models. κ is
varied between 0 and 3 in increments of 0.1



Question Template
What will happen to Others? The effect on others will be ___
How would Others feel as a result? Others feel ___
What will Others want to do next? After, others will want to ___
How would you describe CHARACTER? CHARACTER is ___
What will happen to CHARACTER? The effect on CHARACTER will be ___
What does CHARACTER need to do before this? Before, CHARACTER needs to ___
Why did CHARACTER do this? CHARACTER did this because ___
How would CHARACTER feel afterwards? CHARACTER feels ___
What will CHARACTER want to do next? After, CHARACTER will want to ___

Table 9: Templates used to convert question answering pairs from SOCIALIQA to a format that can be evaluated
by the baseline pretrained language models: GPT, GPT2-117M, GPT2-345M, and GPT2-762M.

Relation Description Example Completion:

Event: Person X puts Person X’s trust in
Person Y

oEffect The effect the event has on others be-
sides Person X

is considered trustworthy
is believed
gains Person X’s loyalty

oReact The reaction of others besides Person
X to the event

trusted
honored
trustworthy

oWant What others besides Person X may
want to do after the event

work with Person X
partner with Person X
to help Person X

xAttr How Person X might be described
given their part in the event

faithful
hopeful
trusting

xEffect The effect that the event would have
on Person X

gets relieved
stays faithful
Is betrayed

xIntent The reason why X would cause the
event

to be trusting
his or her help/guidance/advice
to be friends

xNeed What Person X might need to do be-
fore the event

to be friends with Person Y
to have heard a lot of good things about Per-
son Y
to get to know Person Y

xReact The reaction that Person X would
have to the event

trusting
safe, not alone
understood

xWant What Person X may want to do after
the event

to rely on Person Y
to go into business with Person Y
to make sure that their heart feeling is right

Table 10: Definitions of the relations in ATOMIC. Events in ATOMIC center around the personal situations of a
central figure, Person X, with potentially more participants.


