

Discourse-Aware Neural Rewards for Coherent Text Generation

Antoine Bosselut, Yejin Choi

Paul G. Allen School of CSE, University of Washington

Asli Celikyilmaz, Jianfeng Gao, Po-Sen Huang

Deep Learning Technology Center Microsoft Research Al

Xiaodong He JD AI Research

Motivation

- Fine-tuning generation policies with RL improves performance on the metric used as reward
- Underlying assumption that reward metrics highly correlated with quality of generated text

	CIDEr	B-4	R-L	M
MLE	<u>94.0</u>	<u>29.6</u>	<u>52.6</u>	<u>25.2</u>
CIDEr	106.3	31.9	54.3	25.5
BLEU-4	94.4	33.2	53.9	24.6
ROUGE-L	97.7	31.6	55.4	24.5
METEOR	80.4	25.3	51.3	25.9

- Most reward metrics only match localized *n*-gram patterns between generated and gold text
- Discourse structure is **NOT** evaluated by these metrics, but is crucial for coherent long text generation
- Solution: Train a neural network to score production of desired discourse structure during generation, and use score as a reward for the model in self-critical learning

Neural Teacher

- Ordering structure can be used as approximation for discourse structure (Barzilay and Lapata, 2005)
- Teacher learns to score sentence order as analogue for discourse

Training:

- 1) Sample subsequence
- 2) Encode ordered BOWs
- 3) Reverse sentences
- 4) Encode reverse
- 5) Maximize difference

from teacher

model reward

4) Make reward from decoded

sequence the baseline for

5) Apply REINFORCE with

baselined reward

 $r_t = \sum \mathbb{1}(y_t \in \hat{s}_j)(r(\hat{s}_j) - r(s_j^*))$

 $\mathcal{L}_{rl} = -\sum_{t=1}^{T} r_t \log P(\hat{y}_t | \hat{y}_0, ..., y_{t-1}, \mathbf{g}, \mathbf{e})$

Mixed Loss³

 $\sqrt{\|f(S_{j-\ell:j})\|\|f(\overrightarrow{S}_{j-\ell:j})\|} - \overline{\|f(S_{j-\ell:j})\|\|f(\overleftarrow{S}_{j-\ell:j})\|} /$ **Title:** Jellied Horseradish

Ings: horseradish, sugar, vinegar, fruit pectin **Generated Recipe:**

Add sugar and sugar. Add sugar and cook. Add sugar and cook. Add sugar and cook. Remove from heat and add sugar. Fold in whipped cream. Chill. Add sugar and lemon juice. Add sugar.

State Change B1

- Use action and state change lexicons from Bosselut et al., 2018.
- Retain words that map to a verb in lexicon
- Compute scores on ordered action sequence
- Map ordered action words to state changes
- Compute scores on state change sequence

- Fine-tuning word metrics does not improve more abstract discourse scores
- Neural Teacher better than MLE training or fine-tuning with word-level scores
- Fine-tuning with **BOTH** Teachers and word scores does best

Barzilay and Lapata, Modeling Local Coherence: An Entity-based Approach. In ACL, 2005.

Rennie et al., Self-critical Sequence Training for Image Captioning. In CVPR, 2017.

Paulus et al., A Deep Reinforced model for Abstractive Summarization. In ICLR, 2018.

State Change B4

Insights

References: