What’s New?

Sep 2025 Apertus released!
Sep 2025 I’ve been awarded an ERC Starting Grant
Sep 2025 4 papers accepted to EMNLP + 2 to Findings
Sep 2025 3 papers accepted to NeurIPS
Sep 2025 1 paper accepted to ICCV
Jul 2025 2 papers accepted to COLM
Jun 2025 Keynote at Advances in Data Science and AI Conference
May 2025 Outstanding Paper Award at NAACL 2025
Apr 2025 Keynote at the NTU IAS Frontiers Conference on AI
Feb 2025 1 paper accepted to CVPR
Jan 2025 4 papers accepted to NAACL
Jan 2025 INCLUDE is accepted to ICLR (spotlight)
Jan 2025 We won a Meta LLM Evaluation Research Grant!
Nov 2024 Named ELLIS Scholar
Jul 2024 Talk at ICML Large Language Models and Cognition Workshop
Jan 2024 Talk at AI House in Davos about the Swiss AI Initiative
Dec 2023 The Swiss AI Initiative is launched!
Dec 2023 Talk at EMNLP BlackboxNLP Workshop 2023
Nov 2023 Neuro-Symbolic AI Panel at ISWC 2023
Oct 2023 Talk at Johns Hopkins University
Oct 2023 Talk at University of Maryland
Jul 2023 Outstanding Paper Award at ACL 2023
Jan 2023 Panel at Infrarouge
Jan 2023 Talk at IBM Neuro-symbolic AI Workshop
Mar 2022 Talk at EPFL Center for Intelligent Systems
Jan 2022 Talk at IBM Research
Dec 2021 Panel at World Congress of Science & Factual Producers
Nov 2021 Talk at ETH Zurich
Nov 2021 Talk at CIKM Workshop: Knowledge Injection in Neural Networks (KINN)
Nov 2021 Talk at KR Workshop: Knowledge Representation for Hybrid and Compositional AI (KRHCAI)
Sep 2021 Talk at Stanford Graph Learning Workshop
Aug 2021 Talk at IJCAI Workshop: Is Neuro-symbolic SOTA still a myth for NLI? (NSNLI)
Apr 2021 Named to the Forbes 30 under 30 list in Science & Healthcare
Mar 2021 Talk at Microsoft Research
Feb 2021 Talk at AAAI Workshop in Hybrid Artificial Intelligence
Feb 2021 Tutorial on Commonsense Knowledge Acquisition and Representation at AAAI 2021
Nov 2020 Tutorial on Neural Language Generation at EMNLP 2020
Nov 2020 Talk at UCSD Health Informatics Seminar
Nov 2020 Talk at Stanford Cognitive Science Seminar
Jul 2020 Tutorial on Commonsense Knowledge at ACL 2020
Sep 2019 Talk at WeCNLP 2019
                       

Research Interests

Reasoning agents are the next frontier of AI. My research investigates how we can develop AI reasoning agents for the benefit of society, focusing both on designing novel AI reasoning methodologies, and adapting them for applications such as health, education, and global fairness. My group’s research draws on methods in natural language processing, deep learning, machine learning, and artificial intelligence to investigate these problems.

Topics that I focus on include:

LLM Representations of Knowledge. Figuring out how to go from an LLM to a reasoning agent requires understanding what LLMs know, how they represent that knowledge, and how they compose that information internally. My research investigates how LLM subnetworks (and other LLM representations) encode discrete forms of knowledge, how those representations can be modified, and how closely they align with measurements of the human brain [1,2,3,4,5,6]

Reasoning Algorithms. LLMs fail dramatically and unexpectedly when presented with seemingly simple reasoning problems that humans effortlessly solve. We draw on methods from diverse research areas (e.g., symbolic systems, neuroscience, cognitive science, psychology) to devise new methods and frameworks for LLM reasoning. [1,2,3,4,5,6,7]

Large-scale AI Development. LLMs behave differently at small scale compared to large scale. Our work bridges the research gap between these two settings by developing open-source, open-weight, and open-data foundation models. We specifically focus on developing multilingual models trained on compliant data to enable use in diverse regulatory and cultural settings [1,2,3,4]

AI Democratization. Much like previous generations of AI advancement, AI reasoners will be experienced differently by different groups based on their current digital and AI maturity. Across practice areas in health, education, and global fairness, my works works with end users to develop models, theories, and evaluations that enable responsible development of LLM-based AI. [1,2,3,4]

Publications

Please see my Google Scholar for an up-to-date list of publications.

Highlighted Recent Works

APERTUS: Democratizing Open and Compliant LLMs for Global Language Environments
Alejandro Hernández-Cano, Alexander Hägele, Allen Hao Huang, Angelika Romanou, Antoni-Joan Solergibert, Barna Pasztor, Bettina Messmer, Dhia Garbaya, Eduard Frank Ďurech, Ido Hakimi, Juan García Giraldo, Mete Ismayilzada, Negar Foroutan, Skander Moalla, Tiancheng Chen, Vinko Sabolčec, Yixuan Xu, Michael Aerni, Badr AlKhamissi, Ines Altemir Marinas, Mohammad Hossein Amani, Matin Ansaripour, Ilia Badanin, Harold Benoit, Emanuela Boros, Nicholas Browning, Fabian Bösch, Maximilian Böther, Niklas Canova, Camille Challier, Clement Charmillot, Jonathan Coles, Jan Deriu, Arnout Devos, Lukas Drescher, Daniil Dzenhaliou, Maud Ehrmann, Dongyang Fan, Simin Fan, Silin Gao, Miguel Gila, María Grandury, Diba Hashemi, Alexander Hoyle, Jiaming Jiang, Mark Klein, Andrei Kucharavy, Anastasiia Kucherenko, Frederike Lübeck, Roman Machacek, Theofilos Manitaras, Andreas Marfurt, Kyle Matoba, Simon Matrenok, Henrique Mendoncça, Fawzi Roberto Mohamed, Syrielle Montariol, Luca Mouchel, Sven Najem-Meyer, Jingwei Ni, Gennaro Oliva, Matteo Pagliardini, Elia Palme, Andrei Panferov, Léo Paoletti, Marco Passerini, Ivan Pavlov, Auguste Poiroux, Kaustubh Ponkshe, Nathan Ranchin, Javi Rando, Mathieu Sauser, Jakhongir Saydaliev, Muhammad Ali Sayfiddinov, Marian Schneider, Stefano Schuppli, Marco Scialanga, Andrei Semenov, Kumar Shridhar, Raghav Singhal, Anna Sotnikova, Alexander Sternfeld, Ayush Kumar Tarun, Paul Teiletche, Jannis Vamvas, Xiaozhe Yao, Hao Zhao Alexander Ilic, Ana Klimovic, Andreas Krause, Caglar Gulcehre, David Rosenthal, Elliott Ash, Florian Tramèr, Joost VandeVondele, Livio Veraldi, Martin Rajman, Thomas Schulthess, Torsten Hoefler, Antoine Bosselut†, Martin Jaggi†, Imanol Schlag†
arXiv

  • Featured in: Financial Times, RTS, SRF 1, RSI LA 1, Le Temps, 24 Heures, NZZ, The Verge, Engadget, TeleTicino, Blick, SwissInfo, ICT Journal

INCLUDE: Evaluating Multilingual Language Understanding with Regional Knowledge
Angelika Romanou, Negar Foroutan*, Anna Sotnikova*, Sree Harsha Nelaturu, Shivalika Singh, Rishabh Maheshwary, Micol Altomare, Zeming Chen, Snegha A, Alfonso Amayuelas, Azril Hafizi Amirudin, Danylo Boiko, Michael Chang, Jenny Chim, Gal Cohen, Aditya Kumar Dalmia, Abraham Diress, Sharad Duwal, Daniil Dzenhaliou, Daniel Fernando Erazo Florez, Fabian Farestam, Mohamed A. Haggag, Joseph Marvin Imperial, Shayekh Bin Islam, Perttu Isotalo, Maral Jabbarishiviari, Börje F. Karlsson, Eldar Khalilov, Christopher Klamm, Fajri Koto, Dominik Krzeminski, Gabriel Adriano de Melo, Syrielle Montariol, Yiyang Nan, Joel Niklaus, Jekaterina Novikova, Johan Samir Obando Ceron, Debjit Paul, Esther Ploeger, Jebish Purbey, Swati Rajwal, Selvan Sunitha Ravi, Sara Rydell, Roshan Santhosh, Drishti Sharma, Marjana Prifti Skenduli, Arshia Soltani Moakhar, Bardia soltani moakhar, Ayush Kumar Tarun, Azmine Toushik Wasi, Thenuka Ovin Weerasinghe, Serhan Yilmaz, Mike Zhang, Imanol Schlag, Marzieh Fadaee, Sara Hooker, Antoine Bosselut
ICLR 2025

A Logical Fallacy-Informed Framework for Argument Generation
Luca Mouchel, Debjit Paul, Shaobo Cui, Robert West, Antoine Bosselut, Boi Faltings
NAACL 2025

Could ChatGPT get an Engineering Degree? Evaluating Higher Education Vulnerability to AI Assistants
Beatriz Borges*, Negar Foroutan*, Deniz Bayazit*, Anna Sotnikova*, Syrielle Montariol, Tanya Nazaretzky, Mohammadreza Banaei, Alireza Sakhaeirad, Philippe Servant, Seyed Parsa Neshaei, Jibril Frej, Angelika Romanou, Gail Weiss, Sepideh Mamooler, Zeming Chen, Simin Fan, Silin Gao, Mete Ismayilzada, Debjit Paul, Philippe Schwaller, Sacha Friedli, Patrick Jermann, Tanja Kaser, Antoine Bosselut, EPFL Grader Consortium, EPFL Data Consortium
Proceedings of the National Academy of Sciences (PNAS)

  • Featured in: Le Temps, 20 Minutes, Radio Fréquence Jura, Radio France

MEDITRON-70B: Scaling Medical Pretraining for Large Language Models
Zeming Chen, Alejandro Hernández Cano*, Angelika Romanou*, Antoine Bonnet*, Kyle Matoba*, Francesco Salvi, Syrielle Montariol, Matteo Pagliardini, Simin Fan, Andreas Köpf, Amirkeivan Mohtashami, Alexandre Sallinen, Alireza Sakhaeirad, Vinitra Swamy, Igor Krawczuk, Deniz Bayazit, Axel Marmet, Mary-Anne Hartley†, Martin Jaggi†, Antoine Bosselut†
arXiv

  • Featured in: TechXplore, ICTJournal, RTS CQFD, L’AGEFI, GGB, AI Index

PeaCoK: Persona CommonsenseKnowledge for Consistent and Engaging Narratives
Silin Gao, Beatriz Borges, Soyoung Oh, Deniz Bayazit, Saya Kanno, Hiromi Wakaki, Yuki Mitsufuji, Antoine Bosselut
ACL 2023

Recent Preprints

Crosscoding Through Time: Tracking Emergence & Consolidation Of Linguistic Representations Throughout LLM Pretraining
Deniz Bayazit, Aaron Mueller, Antoine Bosselut
arXiv

Parity-Aware Byte-Pair Encoding: Improving Crosslingual Fairness in Tokenization
Negar Foroutan, Clara Meister, Debjit Paul, Joel Niklaus, Sina Ahmadi, Antoine Bosselut†, Rico Sennrich†
arXiv

PERK: Long-Context Reasoning as Parameter-Efficient Test-Time Learning
Zeming Chen, Angelika Romanou, Gail Weiss, Antoine Bosselut
arXiv

ConLID: Supervised Contrastive Learning for Low-Resource Language ID
Negar Foroutan, Jakhongir Saydaliev, Ye Eun Kim, Antoine Bosselut
arXiv

Mixture of Cognitive Reasoners: Modular Reasoning with Brain Like Specialization
Badr Alkhamissi, C. Nicolo de Sabbata, Zeming Chen, Martin Schrimpf†, Antoine Bosselut†
arXiv

AbstRaL: Augmenting LLMs’ Reasoning by Reinforcing Abstract Thinking
Silin Gao, Antoine Bosselut, Samy Bengio, Emmanuel Abbé
arXiv

DrivingVQA: Retrieval-Based Interleaved Visual Chain-of-Thought in Real-World Driving Scenarios
Charles Corbière*, Simon Roburin*, Syrielle Montariol*, Antoine Bosselut, Alexandre Alahi
arXiv

Creativity in AI: Progresses and Challenges
Mete Ismayilzada, Debjit Paul, Antoine Bosselut, Lonneke van der Plas
arXiv

Rational Metareasoning for Large Language Models
C. Nicolo De Sabbata, Theodore R. Sumers, Badr AlKhamissi, Antoine Bosselut, Thomas L. Griffiths
arXiv

Publications

For Better or for Worse, Transformers Seek Patterns for Memorization
Madhur Panwar, Gail Weiss, Navin Goyal, Antoine Bosselut
NeurIPS 2025

Positional Fragility in LLMs: How Offset Effects Reshape Our Understanding of Memorization Risks
Yixuan Xu, Antoni-Joan Solergibert i Llaquet, Antoine Bosselut, Imanol Schlag
NeurIPS 2025

Measuring what Matters: Construct Validity in Large Language Model Benchmarks
Andrew M. Bean, Ryan Othniel Kearns, Angelika Romanou, Franziska Sofia Hafner, Harry Mayne, Jan Batzner, Negar Foroutan, Chris Schmitz, Karolina Korgul, Hunar Batra, Oishi Deb, Emma Beharry, Cornelius Emde, Thomas Foster, Anna Gausen, María Grandury, Simeng Han, Valentin Hofmann, Lujain Ibrahim, Hazel Kim, Hannah Rose Kirk, Fangru Lin, Gabrielle Kaili-May Liu, Lennart Luettgau, Jabez Magomere, Jonathan Rystrøm, Anna Sotnikova, Yushi Yang, Yilun Zhao, Adel Bibi, Antoine Bosselut, Ronald Clark, Arman Cohan, Jakob Nicolaus Foerster, Yarin Gal, Scott A. Hale, Inioluwa Deborah Raji, Christopher Summerfield, Philip Torr, Cozmin Ududec, Luc Rocher, Adam Mahdi
NeurIPS 2025

CAVE: Detecting and Explaining Commonsense Anomalies in Visual Environments
Rishika Bhagwatkar, Syrielle Montariol, Angelika Romanou, Beatriz Borges, Irina Rish, Antoine Bosselut
EMNLP 2025

Reliable Evaluation and Benchmarks for Statement Autoformalization
Auguste Poiroux, Gail Weiss, Viktor Kunčak, Antoine Bosselut
EMNLP 2025

From Language to Cognition: How LLMs Outgrow the Human Language Network
Badr AlKhamissi, Greta Tuckute, Yingtian Tang, Taha Binhuraib, Antoine Bosselut†, Martin Schrimpf†
EMNLP 2025

Context is Gold to find the Gold Passage: Evaluating and Training Contextual Document Embeddings
Max Conti, Manuel Faysse, Gautier Viaud, Antoine Bosselut, Celine Hudelot, Pierre Colombo
EMNLP 2025

RLMEval: Evaluating Research-Level Neural Theorem Proving
Auguste Poiroux, Antoine Bosselut, Viktor Kunčak
Findings of EMNLP 2025

Creative Preference Optimization
Mete Ismayilzada, Antonio Laverghetta Jr., Simone A. Luchini, Reet Patel, Antoine Bosselut, Lonneke van der Plas, Roger Beaty
Findings of EMNLP 2025

Can Performant LLMs Be Ethical? Quantifying the Impact of Web Crawling Opt-Outs
Dongyang Fan, Vinko Sabolčec, Matin Ansaripour, Ayush Kumar Tarun, Imanol Schlag†, Antoine Bosselut†, Martin Jaggi†
COLM 2025

LLMs Are In-Context Bandit Reinforcement Learners
Giovanni Monea, Antoine Bosselut, Kianté Brantley, Yoav Artzi
COLM 2025

GeoExplorer: Active Geo-localization with Curiosity-Driven Exploration
Li Mi, Manon Béchaz, Zeming Chen, Antoine Bosselut, Devis Tuia
ICCV 2025

Global MMLU: Understanding and Addressing Cultural and Linguistic Biases in Multilingual Evaluation
Shivalika Singh, Angelika Romanou, Clémentine Fourrier, David I. Adelani, Jian Gang Ngui, Daniel Vila-Suero, Peerat Limkonchotiwat, Kelly Marchisio, Wei Qi Leong, Yosephine Susanto, Raymond Ng, Shayne Longpre, Wei-Yin Ko, Madeline Smith, Antoine Bosselut, Alice Oh, Andre F. T. Martins, Leshem Choshen, Daphne Ippolito, Enzo Ferrante, Marzieh Fadaee, Beyza Ermis, Sara Hooker
ACL 2025

VinaBench: Benchmark for Faithful and Consistent Visual Narratives
Silin Gao, Sheryl Mathew, Li Mi, Sepideh Mamooler, Mengjie Zhao, Hiromi Wakaki, Yuki Mitsufuji, Syrielle Montariol, Antoine Bosselut
CVPR 2025

PICLe: Pseudo-Annotation for In-context Learning in Low-Resource Named Entity Detection
Sepideh Mamooler, Syrielle Montariol, Alexander Mathis†, Antoine Bosselut†
NAACL 2025

The LLM Language Network: Neuroscientific Approach for Identifying Causally Important Units
Badr AlKhamissi, Greta Tuckute, Antoine Bosselut†, Martin Schrimpf†
NAACL 2025

Evaluating Morphological Compositional Generalization in Large Language Models
Mete Ismayilzada, Defne Circi, Jonne Sälevä, Hale Sirin, Abdullatif Köksal, Bhuwan Dhingra, Antoine Bosselut, Lonneke van der Plas and Duygu Ataman
NAACL 2025

Efficient Tool Use with Chain-of-Abstraction Reasoning
Silin Gao, Jane Dwivedi-Yu, Ping Yu, Xiaoqing Ellen Tan, Ramakanth Pasunuru, Olga Golovneva, Koustuv Sinha, Asli Celikyilmaz, Antoine Bosselut†, Tianlu Wang†
COLING 2025

Discovering Knowledge-Critical Subnetworks in Pretrained Language Models
Deniz Bayazit, Negar Foroutan, Zeming Chen, Gail Weiss, Antoine Bosselut
EMNLP 2024

Let Me Teach You: Pedagogical Foundations of Feedback for Language Models
Beatriz Borges, Niket Tandon, Tanja Käser, Antoine Bosselut
EMNLP 2024

“Flex Tape Can’t Fix That”: Bias and Misinformation in Edited Language Models
Karina H Halevy, Anna Sotnikova, Badr AlKhamissi, Syrielle Montariol, Antoine Bosselut
EMNLP 2024

Making Reasoning Matter: Measuring and Improving Faithfulness of Chain-of-Thought Reasoning
Debjit Paul, Robert West, Antoine Bosselut, Boi Faltings
EMNLP Findings 2024

Instruction-tuning Aligns LLMs to the Human Brain
Khai Loong Aw, Syrielle Montariol, Badr AlKhamissi, Martin Schrimpf†, Antoine Bosselut†
COLM 2024

ConGeo: Robust Cross-view Geo-localization across Ground View Variations
Li Mi, Chang Xu, Javiera Castillo Navarro, Syrielle Montariol, Wen Yang, Antoine Bosselut, Devis Tuia
ECCV 2024

DiffuCOMET: Contextual Commonsense Knowledge Diffusion
Silin Gao, Mete Ismayilzada, Mengjie Zhao, Hiromi Wakaki, Yuki Mitsufiji, Antoine Bosselut
ACL 2024

Complex Reasoning over Logical Queries on Commonsense Knowledge Graphs
Tianqing Fang, Zeming Chen, Yangqiu Song, Antoine Bosselut
ACL 2024

δ-Causal: Exploring Defeasibility in Causal Reasoning
Shaobo Cui, Lazar Milikic, Yiyang Feng, Mete Ismayilzada, Debjit Paul, Antoine Bosselut, Boi Faltings
ACL Findings 2024

Course Recommender Systems Need to Consider the Job Market
Jibril Frej, Anna Dai, Syrielle Montariol, Antoine Bosselut, Tanja Käser
SIGIR 2024

A Design Space for Intelligent and Interactive Writing Assistants
Mina Lee, Katy Ilonka Gero, John Joon Young Chung, Simon Buckingham Shum, Vipul Raheja, Hua Shen, Subhashini Venugopalan, Thiemo Wambsganss, David Zhou, Emad A. Alghamdi, Tal August, Avinash Bhat, Madiha Zahrah Choksi, Senjuti Dutta, Jin L.C. Guo, Md Naimul Hoque, Yewon Kim, Simon Knight, Seyed Parsa Neshaei, Antonette Shibani, Disha Shrivastava, Lila Shroff, Agnia Sergeyuk, Jessi Stark, Sarah Sterman, Sitong Wang, Antoine Bosselut, Daniel Buschek, Joseph Chee Chang, Sherol Chen, Max Kreminski, Joonsuk Park, Roy Pea, Eugenia Rho, Zejiang Shen, Pao Siangliulue
CHI 2024

REFINER: Reasoning Feedback on Intermediate Representations
Debjit Paul, Mete Ismayilzada, Maxime Peyrard, Beatriz Borges, Antoine Bosselut, Robert West, Boi Faltings
EACL 2024

ConVQG: Contrastive Visual Question Generation with Multimodal Guidance
Li Mi, Syrielle Montariol, Javiera Castillo Navarro, Xianjie Dai, Antoine Bosselut, Devis Tuia
AAAI 2024

EPFL-MAKE at “Discharge Me!”: An LLM System for Automatically Generating Discharge Summaries of Clinical Electronic Health Records
Haotian Wu, Paul Boulenger, Antonin Faure, Berta Céspedes, Farouk Boukil, Nastasia Morel, Zeming Chen, Antoine Bosselut
BioNLP 2024

JobSkape: A Framework for Generating Synthetic Job Postings to Enhance Skill Matching
Antoine Magron*, Anna Dai*, Mike Zhang, Syrielle Montariol, Antoine Bosselut
NLP4HR 2024

Re-thinking Skill Extraction in the Job Market Domain using Large Language Models
Khanh Cao Nguyen, Mike Zhang, Syrielle Montariol, Antoine Bosselut
NLP4HR 2024

Enhancing Procedural Writing Through Personalized Example Retrieval: A Case Study on Cooking Recipes Paola Mejia-Domenzain, Jibril Frej, Seyed Parsa Neshaei, Luca Mouchel, Tanya Nazaretsky, Thiemo Wambsganss, Antoine Bosselut, Tanja Käser International Journal of Artificial Intelligence in Education, 2024

RECKONING: Reasoning through Dynamic Knowledge Encoding
Zeming Chen, Gail Weiss, Eric Mitchell, Asli Celikyilmaz, Antoine Bosselut
NeurIPS 2023

CRoW: Benchmarking Commonsense Reasoning in Real-World Tasks
Mete Ismayilzada, Debjit Paul, Syrielle Montariol, Mor Geva, Antoine Bosselut
EMNLP 2023

CRAB: Assessing the Strength of Causal Relationships Between Real-world Events
Angelika Romanou, Syrielle Montariol, Debjit Paul, Leo Laugier, Karl Aberer, Antoine Bosselut
EMNLP 2023
– LLM-CP workshop, AAAI 2024 (Spotlight Paper)

Towards a Mechanistic Interpretationof Procedural Reasoning Capabilities of Language Models
Yifan Hou, Jiaoda Li, Yu Fei, Alessandro Stolfo, Wangchunshu Zhou, Guangtao Zeng, Antoine Bosselut, Mrinmaya Sachan
EMNLP 2023

Breaking the Language Barrier: Improving Cross-Lingual Reasoning with Structured Self-Attention
Negar Foroutan, Mohammadreza Banaei, Karl Aberer, Antoine Bosselut
EMNLP Findings 2023

CAR: Conceptualization-Augmented Reasoner for Zero-Shot Commonsense Question Answering
Weiqi Wang*, Tianqing Fang*, Wenxuan Ding, Baixuan Xu, Xin Liu, Yangqiu Song, Antoine Bosselut
EMNLP Findings 2023

Mitigating Label Biases for In-context Learning
Yu Fei, Yifan Hou, Zeming Chen, Antoine Bosselut
ACL 2023

DISCO: Distilling Phrasal Counterfactuals with Large Language Models
Zeming Chen, Qiyue Gao, Kyle Richardson, Antoine Bosselut, Ashish Sabharwal
ACL 2023

Kogito: A Commonsense Knowledge Inference Toolkit
Mete Ismayilzada, Antoine Bosselut
EACL 2023 - Systems Demonstrations

Discovering Language-neutral Sub-networks in Multilingual Language Models
Negar Foroutan, Mohammadreza Banaei, Remi Lebret, Antoine Bosselut, Karl Aberer
EMNLP 2022

Conditional set generation using Seq2seq models
Aman Madaan, Dheeraj Rajagopal, Niket Tandon, Yiming Yang, Antoine Bosselut
EMNLP 2022

ComFact: A Benchmark for Linking Contextual Commonsense Knowledge
Silin Gao, Jena Hwang, Saya Kanno, Hiromi Wakaki, Yukhi Mitsufiji, Antoine Bosselut
EMNLP Findings 2022

Deep Bidirectional Language-Knowledge Pretraining
Michihiro Yasunaga, Antoine Bosselut, Hongyu Ren, Xikun Zhang, Christopher D. Manning, Percy Liang, Jure Leskovec
NeurIPS 2022

Memory-Based Model Editing at Scale
Eric Mitchell, Charles Lin, Antoine Bosselut, Christopher D. Manning, Chelsea Finn
ICML 2022

GreaseLM: Graph Reasoning Enhanced Language Models for Question Answering
Xikun Zhang, Antoine Bosselut, Michihiro Yasunaga, Hongyu Ren, Percy Liang, Christopher D. Manning, Jure Leskovec
ICLR 2022

Fast Model Editing at Scale
Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, Christopher D. Manning
ICLR 2022

Synthetic Disinformation Attacks on Automated Fact Verification Systems
Yibing Du*, Antoine Bosselut*, Christopher D. Manning
AAAI 2022

End-to-End Task-Oriented Dialog Modeling with Semi-Structured Knowledge Management
Silin Gao, Ryuichi Takanobu, Antoine Bosselut, Minlie Huang
Transactions on Audio, Speech and Language Processing (TASLP), 2022

Analyzing Commonsense Emergence in Few-shot Knowledge Models
Jeff Da, Ronan Le Bras, Ximing Lu, Yejin Choi, Antoine Bosselut
AKBC 2021

Conversational Multi-hop Reasoning with Neural Commonsense Knowledge and Symbolic Logic Rules
Forough Arabshahi*, Jennifer Lee*, Antoine Bosselut, Yejin Choi, Tom Mitchell
EMNLP 2021

On-the-Fly Attention Modulation for Neural Generation
Yue Dong, Chandra Bhagavatula, Ximing Lu, Jena D. Hwang, Antoine Bosselut, Jackie Chi Kit Cheung, Yejin Choi
ACL Findings 2021

Edited Media Understanding Frames: Reasoning About the Intent and Implications of Visual Misinformation
Jeff Da, Maxwell Forbes, Rowan Zellers, Anthony Zheng, Jena D. Hwang, Antoine Bosselut, Yejin Choi
ACL 2021

QA-GNN: Reasoning with Language Models and Knowledge Graphs for Question Answering
Michihiro Yasunaga, Hongyu Ren, Antoine Bosselut, Percy Liang, Jure Leskovec
NAACL 2021

I’m Not Mad: Commonsense Implications of Negation and Contradiction
Liwei Jiang, Antoine Bosselut, Chandra Bhagavatula, Yejin Choi
NAACL 2021

Discourse Understanding and Factual Consistency in Abstractive Summarization
Saadia Gabriel, Antoine Bosselut, Ari Holtzman, Jeff Da, Jan Buys, Kyle Lo, Asli Celikyilmaz, Yejin Choi
EACL 2021

(Comet-)Atomic2020: On Symbolic and Neural Commonsense Knowledge Graphs
Jena D. Hwang*, Chandra Bhagavatula*, Ronan Le Bras, Jeff Da, Keisuke Sakaguchi, Antoine Bosselut, Yejin Choi
AAAI 2021

Dynamic Neuro-Symbolic Knowledge Graph Construction for Zero-shot Commonsense Question Answering
Antoine Bosselut, Ronan Le Bras, Yejin Choi
AAAI 2021

Back to the Future: Unsupervised Backprop-based Decoding for Counterfactual and Abductive Commonsense Reasoning
Lianhui Qin, Vered Shwartz, Peter West, Chandra Bhagavatula, Jena D. Hwang, Ronan Le Bras, Antoine Bosselut, Yejin Choi
EMNLP 2020

Procedural Reading Comprehension with Attribute-Aware Context Flow
Aida Amini, Antoine Bosselut, Bhavana Dalvi, Yejin Choi, Hannaneh Hajishirzi
AKBC 2020

Commonsense Knowledge Base Completion with Structural and Semantic Context
Chaitanya Malaviya, Chandra Bhagavatula, Antoine Bosselut, Yejin Choi
AAAI 2020

Counterfactual Story Reasoning and Generation
Lianhui Qin, Antoine Bosselut, Ari Holtzman, Chandra Bhagavatula, Elizabeth Clark, Yejin Choi
EMNLP 2019

Everything Happens for a Reason: Discovering the Purpose of Actions in Procedural Text
Bhavana Dalvi*, Niket Tandon* , Antoine Bosselut, Wen-tau Yih, Peter Clark
EMNLP 2019

WIQA: A Dataset For ”What if…” Reasoning over Procedural Text
Niket Tandon*, Bhavana Dalvi*, Keisuke Sakaguchi, Antoine Bosselut, Peter Clark
EMNLP 2019

COMET: Commonsense Transformers for Automatic Knowledge Graph Construction
Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chaitanya Malaviya, Asli Celikyilmaz, Yejin Choi
ACL 2019

  • Featured in: Quanta Magazine, The Atlantic, Communications of ACM, Le Scienze

Be Consistent! Improving Procedural Text Comprehension using Label Consistency
Xinya Du, Bhavana Dalvi, Niket Tandon, Antoine Bosselut, Wen-tau Yih, Peter Clark, Claire Cardie
NAACL 2019

Reasoning about Actions and State Changes by Injecting Commonsense Knowledge
Niket Tandon*, Bhavana Dalvi*, Joel Grus, Wen-tau Yih, Antoine Bosselut, Peter Clark
EMNLP 2018

Modeling Naive Psychology of Characters in Simple Commonsense Stories
Hannah Rashkin, Antoine Bosselut, Maarten Sap, Kevin Knight, Yejin Choi
ACL 2018

Learning to Write with Cooperative Discriminators
Ari Holtzman, Jan Buys, Maxwell Forbes, Antoine Bosselut, David Golub, Yejin Choi
ACL 2018

Discourse-aware Neural Rewards for Coherent Text Generation
Antoine Bosselut, Asli Celikyilmaz, Xiaodong He, Jianfeng Gao, Po-sen Huang, Yejin Choi
NAACL 2018

Deep Communicating Agents for Abstractive Summarization
Asli Celikyilmaz, Antoine Bosselut, Xiaodong He, Yejin Choi
NAACL 2018

Simulating Action Dynamics with Neural Process Networks
Antoine Bosselut, Omer Levy, Ari Holtzman, Corin Ennis, Dieter Fox, Yejin Choi
ICLR 2018

Learning Prototypical Event Structure from Photo Albums
Antoine Bosselut, Jianfu Chen, David Warren, Hannaneh Hajishirzi, Yejin Choi
ACL 2016

Technical Reports

Large Language Models are Catalyzing Chemistry Education
Yuanqi Du*, Chenru Duan*, Andres M. Bran*, Anna Sotnikova, Yi Qu, Heather Kulik, Antoine Bosselut, Jinjia Xu, Philippe Schwaller
ChemRxiv

ComperDial: Commonsense Persona-grounded Dialogue Dataset and Benchmark
Hiromi Wakaki*, Yuki Mitsufuji*, Yoshinori Maeda, Yukiko Nishimura, Silin Gao, Mengjie Zhao, Keiichi Yamada, Antoine Bosselut
arXiv

Evaluating Language Model Agency through Negotiations
Tim R. Davidson, Veniamin Veselovsky, Martin Josifoski, Maxime Peyrard, Antoine Bosselut, Michal Kosinski, Robert West
arXiv

On the Opportunities and Risks of Foundation Models
Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson, Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri Chatterji, Annie Chen, Kathleen Creel, Jared Quincy Davis, Dora Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Stefano Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren Gillespie, Karan Goel, Noah Goodman, Shelby Grossman, Neel Guha, Tatsunori Hashimoto, Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keeling, Fereshte Khani, Omar Khattab, Pang Wei Koh, Mark Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya Kumar, Faisal Ladhak, Mina Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li, Xuechen Li, Tengyu Ma, Ali Malik, Christopher D. Manning, Suvir Mirchandani, Eric Mitchell, Zanele Munyikwa, Suraj Nair, Avanika Narayan, Deepak Narayanan, Ben Newman, Allen Nie, Juan Carlos Niebles, Hamed Nilforoshan, Julian Nyarko, Giray Ogut, Laurel Orr, Isabel Papadimitriou, Joon Sung Park, Chris Piech, Eva Portelance, Christopher Potts, Aditi Raghunathan, Rob Reich, Hongyu Ren, Frieda Rong, Yusuf Roohani, Camilo Ruiz, Jack Ryan, Christopher Ré, Dorsa Sadigh, Shiori Sagawa, Keshav Santhanam, Andy Shih, Krishnan Srinivasan, Alex Tamkin, Rohan Taori, Armin W. Thomas, Florian Tramèr, Rose E. Wang, William Wang, Bohan Wu, Jiajun Wu, Yuhuai Wu, Sang Michael Xie, Michihiro Yasunaga, Jiaxuan You, Matei Zaharia, Michael Zhang, Tianyi Zhang, Xikun Zhang, Yuhui Zhang, Lucia Zheng, Kaitlyn Zhou, Percy Liang
arXiv

  • Featured in: VentureBeat, Fast Company, Axios, Communications of ACM

Efficient Adaptation of Pretrained Transformers for Summarization
Andrew Hoang, Antoine Bosselut, Asli Celikyilmaz, Yejin Choi
arXiv

Media

My Research in The News

PME. ChatGPT très performant dans les évaluations universitaires (Nov 2024)

myScience. Could ChatGPT get an engineering degree? (Nov 2024)

L’AGEFI. L’industrie pharma croit au potentiel de l’intelligence artificielle à tous les niveaux (Dec 2023)

GGB. Meditron, EPFL’s new Large Language Model for medical knowledge (Dec 2023)

ICT Journal. Né à l’EPFL: un LLM open source spécialisé dans le domaine médical (Dec 2023)

RTS CQFD. EPFL: Meditron (Dec 2023)

Communications of the ACM. Seeking Artificial Common Sense (Nov 2020)

The Atlantic. The Easy Questions that Stump Computers (May 2020)

Quanta Magazine. Common Sense Comes Closer to Computers (April 2020)

New York Academy of Sciences. Can Researchers Create Commonsense Artificial Intelligence? (June 2019)

The Gradient. NLP’s generalization problem, and how researchers are tackling it (August 2018)

NLP Highlights Podcast. 54 - Simulating Action Dynamics with Neural Process Networks, with Antoine Bosselut (March 2018)

My Thoughts in the News

SwissInfo. Artificial intelligence in Switzerland: what’s new for 2025 (Jan 2025)

Le Temps. Le superordinateur suisse Alps, monstre de puissance de classe mondiale, commence ses activités (Sept 2024)

SwissInfo. The numbers that shaped debate at WEF 2024 (Jan 2024)

SwissInfo. Can WEF break the impasse on global governance of AI? (Jan 2024)

Blick. Comment la Suisse veut instaurer la confiance en l’IA (Jan 2024)

Le Temps. Un super-ordinateur suisse dédié à l’IA (Dec 2023)

Corriere del Ticino. Ma davvero ChatGPT sta acquisendo tratti sempre più simili ai nostri? (Oct 2023)

Mirage News. Making AI work for everyone (Sept 2023)

RTS Forum. Les IA peuvent-elles comprendre l’humour? (May 2023)

RTS Infrarouge. Intelligence artificielle: le grand remplacement? (Jan 2023)

Tribune de Genève. Intelligence artificielle: Profession? Journaliste sportif virtuel (Jan 2023)

Heidi.news ChatGPT facilite la triche: et si c’était une bonne nouvelle? (Jan 2023)

Communications of the ACM. The Best of NLP (April 2021)

Joining EPFL NLP

If you’re interested in joining the EPFL NLP group, please read the following:

I am…

Looking for a postdoctoral position Feel free to contact me about potential postdoctoral positions. Also, check out these opportunities for fully funded postdoctoral positions that I can be a co-advisor on:
Horizon Europe Swiss Postdoctoral Fellowships
EPFLeaders4impact Postdoctoral Fellowships
Applying to the EPFL EDIC PhD program I will be taking on new PhD students next year! Apply if you’re interested in joining EPFL to work with me. Before you can be considered for the NLP lab, however, you will have to be admitted to the EDIC program, which handles admissions centrally. Feel free to let me know if you apply, but I unfortunately can’t conduct pre-screenings until applications are in.
An EDIC fellow I’m happy to supervise rotations provided our research interests align and there’s a good chance that the rotation will lead to a permanent position in the lab.
An EPFL Master’s student I’m happy to supervise Master’s projects and theses every semester! If you’re interested in doing a project with EPFL NLP, send an e-mail to:
nlp-projects-apply@groupes.epfl.ch
Please attach your CV and transcript and include [Masters Project] or [Masters Thesis] in your subject heading. If you want a sense of what a project in our lab would be about, check out my research interests above or those of my lab members! If you would like to complete an industry PDM, please follow the guidelines presented here
Looking for a summer internship If you are a Bachelor’s or Master’s student at another university, please apply through the Summer@EPFL program. If you are looking for a PhD internship, contact me directly.